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Can quantum computers simulate all physical
processes efficiently?

Universality Conjecture:
Quantum circuits can simulate all physical

dynamics in poly(E,V,t,1/¢) time.

Status:
Non-relativistic QM Yes: Now being optimized
Quantum Field Theories Probably: In progress

Quantum Gravity/Strings Nobody knows



Quantum Field Theory

e Much is known about using quantum computers
to simulate quantum systems.

 Why might quantum field theory be different?

— Field has infinitely many degrees of freedom
- Relativistic

— Particle number not conserved

- Formalism looks different.



When do we need QFT?

Accelerator Experiments

osmi Rays Coarse-grained many-body systems
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Classical Algorithms

Feynman diagrams Lattice methods

e f\&ﬂrmrr( €«

QORI AT
- & | AL S X B2 .’
AT o A T O OB O
A T i ] K %‘ ' Lod
! s .’\ . . : - - =
" 3 - '_"u 4 ';_ = -

F O~
AV Pat

Break down at strong Cannot calculate
coupling or high precision scattering amplitudes

There's room for exponential speedup by quantum computing.



A QFT Computational Problem

Input: a list of momenta
of incoming particles. T~ ///:

\
Output: a list of momenta N,
of outgoing particles.




Results So Far

e Efficient quantum simulation algorithms:

Bosonic Fermionic

Massive [ Jordan, Lee, Preskill Jordan, Lee, Preskill
Science, 336:1130 (2012) | ArXiv:1404.7115 (2014)

Massless ? ?

 BQP-hardness: classical computers cannot perform
certain QF T simulations efficiently

[S. Jordan, H. Krovi, K. Lee, K. Preskill, 2017]

o Better Speed and Broken Symmetries
[A. Moosavian and S. Jordan, 2017]



Representing Quantum Fields

Afield is a list of values, one for each location in space.

A quantum field is a superposition over classical fields.
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A superposition over bit strings is a state of a quantum computer.




¢'-theory
Lagrangian density
1 A
L = §3N€f’5p,¢’ — m2q52 — Efﬁﬁ

For quantum simulation we prefer
Hamiltonian formulation (equivalent)

H = / dz [7% + (V9)? + m?¢® + A’

[¢(2), m(y)] = i6'Y(z — y)



Our Algorithms

1) Choose a lattice discretization.

Bound discretization error (by renormalization
group).

2) Prepare physically realistic initial state.

Is the most time-consuming step.
This depends strongly on which QF T simulated.

3) Implement time-evolution by a quantum circuit.
Use Trotter formulae.
4) Perform measurements on final state.

Complicated by vacuum entanglement.



Lattice Cutoff

Continuum QFT = limit of a sequence of theories
on successively finer lattices.

— —— ... continuum




Mass: m

Interaction strength: )\

Coarse grain

Mass: m/’

Interaction strength: )\’




Lattice Cutoff

Continuum QFT = limit of a sequence of theories
on successively finer lattices.

— —— ... continuum

m and A are functions of lattice spacing!
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Coarse grain
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Adiabatic State Preparation

H(S) — Hfree + SHinteraction

Prepare wavepackets in free theory, then
adiabatically turn on interaction. Problem:

s=0 s=1




Adiabatic State Preparation

Solution: intersperse backward time evolutions
with time-independent Hamiltonians.

This winds back dynamical phase on each
eigenstate without undoing adiabatic change of

basis. A\
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Simulating Detectors

« Measure energy in localized regions:

* Need smooth envelope function to avoid
excessive vacuum noise!

Hy =) [(X)H(X)



Runtimes
Weak Coupling:

d=1
d=2
d=3

Strong Coupling:
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quantum
field theories

Turaev—-Viro
Tutte
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topological
quantum
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/ Game trees Formula evaluation
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scattering
"quantum walks"




Fermions:

® Fermion doubling problem

® Free vacuum different from Bosonic case

Gross-Neveu:
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Fermion Doubling Problem

dw \¢($+@)_w($_a) 9 2 . 2 2
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Wilson Term

H%H——Zw a) — 2¢(z) + ¥(z — a))




Improved State Prep: Bosons

 In some cases (e.g. weakly coupled d=2),
preparing the free vacuum is the rate limiting step.

 \We can do this much faster using Bogoliubov
transformation that looks like a Fast Fourier

Transform.
[Somma, Jordan, unpublished]

 Essentially same idea as 2" quantized FFT from:

[Babbush, Wiebe, McClean, McLain, Neven, Chan, 2017]



Improved State Prep: Fermions

 Two problems with adiabatic state preparation:

— Cannot reach symmetry-broken phase
~ Runtime bound not practical: O(e™®)

e A solution for both:

— First, prepare the vacuum from MPS
— Then, resonantly excite single-particle wavepackets
— Tighter analysis: CFT entropy and Floquet theory:

0(6—3.23)

[A. Moosavian, S. Jordan, 2017]



Tensor Network Ansatzes
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Tensor Network Ansatzes

[Swingle, Kim, 2017]



Near-Term Prospects?

quantum science commercial
supremacy applications applications

>

e Simulating conformal field theories using
MERA-based variational eigensolvers

e Simulating commuting Hamiltonians

e Simulating high-connectivity systems, e.g. spin
glasses or SYK model
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Thanks!



